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ABSTRACT

A series of statistically steady states for baroclinically unstable jets in a two-layer quasigeostrophic model is
examined, in order to evaluate diffusive approximations to the eddy potential vorticity or heat fluxes. The flow
is forced by thermal relaxation to an unstable “‘radiative equilibrium’” temperature gradient. The statistically
steady states are studied as a function of the width of the radiative equilibrium jet. A local diffusive *‘theory”’
for the eddy fluxes is obtained from integrations of a homogeneous, doubly periodic model with prescribed
environmental potential vorticity gradients. The flux-gradient relationship generated by the homogeneous model
predicts the magnitude and shape of the eddy fluxes in the unstable jet flows remarkably well, as long as the jet
is not too narrow. These results confirm the relevance of diffusive closures for eddy potential vorticity and heat
fluxes in such flows. For narrow jets that produce eddy fluxes with a half-width of one to two radii of deformation,

this local theory underpredicts the fluxes.

1. Introduction

The development of a theory for the magnitude of
the eddy fluxes and energy levels in the midlatitude
troposphere remains a central problem in meteorology.
In this paper, we approach this issue by studying the
statistically steady states of a two-layer, quasigeo-
strophic model on a 8 plane. Since Phillips’s (1956)
pioneering work, it has been known that this model can
reproduce some of the qualitative features of the mid-
tropospheric flow. It is also well known that this model
has serious deficiencies. Besides the constraint on ver-
tical structure imposed by the two-layer assumption,
the quasigeostrophic framework does not allow one to
directly study the maintenance of the static stability of
the troposphere. In spite of these limitations, we are
confident that an understanding of this quasigeo-
strophic system is an important stepping stone to an
understanding of more realistic models.

Two seemingly distinct pictures have often served as
simple starting points for discussion of the eddy fluxes
in idealized models of baroclinic instability and in the
atmosphere: adjustment and diffusion. In an adjustment
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theory, the eddies are assumed to be constrained so as
to generate a mean flow with certain properties. In its
simplest form, as applied to the two-layer model, one
assumes that the eddy fluxes remove the region of re-
versed potential vorticity (PV) gradient in the lower
layer of the model (Stone 1978; Smagorinsky 1963).
In the diffusive picture, the eddy PV flux is not only
assumed to be directed down the mean PV gradient but
also to have an amplitude that is determined by the
local environment (Green 1970; Wiin-Nielsen and Sela
1971). These two pictures are not mutually exclusive.
Both may be appropriate but in different parts of pa-
rameter space, or their ranges of validity may actually
overlap. For example, a diffusive theory might predict
a flux large enough, for any supercritical vertical shear,
to overpower whatever restoring forces are present in
the system and to reduce the shears to their critical
values, .

Authors who have addressed some of these issues
include Harrison (1978), who examines the possibility
of using a diffusive parameterization in the rather com-
plex setting of a model of an ocean basin, and Vallis
(1988), who discusses adjustment versus diffusive pa-
rameterizations in the context of a homogeneous qua-
sigeostrophic model. Our work is most closely related
to that of Panetta and Held (1988), who study the sta-
tistics of a baroclinically unstable flow as a function of
the width of the unstable region.

A very useful technique for distinguishing between
nonlocal adjustment and local diffusive theories is the
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study of baroclinically unstable jets as a function of the
width of the jet. Specifically, suppose that one forces a
two-layer model to develop baroclinic instability by re-
laxing the temperature (the interface height in the two-
layer model) to

0(y) = Ao tanh(%) . @)

Here, o is the width of the baroclinic jet in balance
with this ‘‘radiative equilibrium’’ temperature field.
We have chosen the temperature drop across the baro-
clinic zone proportional to o so that the maximum
strength of the radiative equilibrium jet is independent
of o. The relaxation timescale is fixed. As described
more fully below, if the eddy fluxes are assumed to
adjust the shear or temperature gradient to some critical
value, then the flux must be proportional to 2. In con-
trast, a diffusive picture predicts that the flux will as-
ymptote to a constant as ¢ — . Panetta and Held
(1988) address this issue with a ‘‘wave-mean flow in-
teraction’’ two-layer model, truncated so that only the
zonal mean and a single zonal wavenumber are re-
tained, and find that the diffusive prediction is correct.
The rate at which the flow in their model can transport
PV or heat does not grow without bound, even though
the available potential energy in the radiative equilib-
rium state increases as o *. Our purpose in this paper is
to reexamine this result with a more isotropically trun-
cated two-layer model and to explore the implications
for diffusive eddy flux closure schemes.

How does one compute or estimate the diffusivity to
be used in a diffusive closure scheme? An important
step is to isolate this problem in the setting of a hori-
zontally homogeneous model with imposed environ-
mental (time mean), horizontally uniform, PV gradi-
ents. The horizontal homogeneity is critical, since it
prevents the eddies from modifying the environmental
gradients, so that these gradients are external parame-
ters; in principle, there is no convergence or divergence
that can alter the time mean since the time-mean eddy
fluxes are independent of horizontal position. If the flux
is determined by the local environment in some way,
rather than by more global constraints as in an adjust-
ment theory, then the homogeneous model is the ap-
propriate apparatus for ‘‘measuring’’ the diffusivity.

With radiative equilibrium temperatures given by
(1), in the limit as ¢ — « the eddy statistics should
approach those predicted by a homogeneous model in
which the imposed mean temperature gradient is the
radiative equilibrium gradient at the jet center. The re-
sults in Panetta and Held (1988) support this conten-
tion for the truncated model they consider. But if the
fluxes or diffusivities obtained from the homogeneous
model are only relevant in this limit, they will be of
little meteorological (or oceanic) relevance. The hope
is that the local relationship between the fluxes and the
time-mean flow is qualitatively the same as that pre-
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dicted by the homogeneous model, even for moderately
narrow jets in which the mean flow is significantly
modified by the eddies. We would like to understand
the extent to which this is the case.

There are reasons to be pessimistic. The mean flow
in the homogeneous model can have no horizontal
shear, yet James and Gray (1986) have argued that the
influence of barotropic shears on the statistics of baro-
clinic eddies is considerable. Also, in the homogeneous
model the flow breaks down into multiple jets and
storm tracks (Panetta 1993). This also occurs in in-
homogeneous flows when the forcing is sufficiently
slowly varying, but these structures complicate the
comparison between the homogeneous and inhomo-
geneous flows.

After describing the models briefly in section 2,
some statistically steady states of baroclinically unsta-
ble jets of various widths are described in section 3.
These are compared to the predictions of the homo-
geneous model in section 4. Further discussion of eddy
flux closures can then be found in the concluding sec-
tion.

2. The models

The configuration and numerical scheme in our two-
layer model is identical to that described by Lee and
Held (1991). The model equations are

aﬂi = —=J(:, q:) + S, (2)
where
S = ~H — vV
Sz =H+ kazlllg - VV4q2
H=-mﬁﬂ§iﬁ—%@ﬁ. (3)

The subscripts 1 and 2 refer to the upper and lower
layers, respectively. The potential vorticities, stream-
functions, and velocities are linked by the following
relations:

Y —

g =py+ Vs (- @

(Muvf):(‘ayd/i,axl//i)- (5)

The flow is forced by the linear relaxation of the baro-
clinic streamfunction, 8 = (Y; — ¥,)/2, to its radiative
equilibrium value §,,. Ekman damping of the vorticity
is included in the lower layer, and biharmonic damping
of the potential vorticity in both layers. The zonally
averaged zonal flow is denoted by U. If there are no
eddies, the flow will be zonal, U, will vanish, and

Up = Uy = ~2 %‘i = sech2<1> NG

a
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We have nondimensionalized by choosing the radius
of deformation as the length scale and the maximum
strength of the upper-level wind in radiative equilib-
rium, U,,, as the velocity scale. In these units, a hori-
zontally uniform vertical shear U, — U, = § is baro-
clinically unstable by Phillips’s criterion, in the absence
of damping, if 8 — §/2 < 0.

As a consequence of the simple linear form of the
forcing in this model, the time-mean flow is a simple
function of the eddy PV fluxes. In fact, if we average
equation (2) in time, as well as in the zonal direction,
and we neglect the contribution of the biharmonic dif-
fusion term, we obtain that the lower-level zonal wind
is proportional to the sum of the eddy potential vorticity
fluxes in the two layers, while the deviation of the ver-
tical shear of the zonal wind from its radiative value is
proportional to the second derivative of the upper-layer
flux:

i
Uz=z_(F1+Fz) (7)
M
2 8°F
Ui =Ur=Ua~ - By; (8)
where
F, =v]ql. (9

Here, an overbar refers to the zonal mean, while time
means are understood in (7) and (8).

The domain is a reentrant channel with a length equal
to 207 so that the smallest nonzero zonal wavenumber
is 0.1. The width of the channel varies from experiment
to experiment but is always large enough that there is
essentially no eddy activity at the channel walls. The
model is spectral in x and finite differenced in y. We
retain 32 wavenumbers zonally and use five grid points
per unit of length meridionally. While it would not be
difficult to obtain some higher-resolution solutions, this
modest resolution allows us to obtain numerous statis-
tically steady states, including some in very wide chan-
nels. The nondimensional biharmonic diffusion coef-
ficient is held at the value 10~ throughout.

We also employ a doubly periodic model that is iden-
tical to that in Haidvogel and Held (1980). It is spectral
in both dimensions and truncated at 64 X 64 waves so
that there are 32 positive zonal wavenumbers, as in the
channel model. The domain is a square of size 20x. In
this homogeneous model, the domain-averaged winds
and potential vorticity gradients in both layers are ex-
ternal parameters. The nondimensionalization is iden-
tical to that in the channel model. The mean upper-layer
wind is set equal to S, and the lower-layer wind to zero.
If § = 1, the vertical shear is equal to that in radiative
equilibrium at the center of the jet in the channel model.
The mean potential vorticity gradient is § + S/2 in the
upper layer and B — S/2 in the lower layer. The bihar-
monic diffusivity has the same value as in the channel
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model. Both models are typically integrated for 1000—
2000 time units, after discarding a spinup period, to
obtain statistically steady states.

3. Channel model results

There are several parameters of interest in this
model: B, which one can think of as a measure of the
strength, or the supercriticality, of the jet; k,, the
strength of the Ekman damping; k7, the strength of the
thermal damping; and o, the width of the radiative equi-
librium jet. We have not been so ambitious as to at-
tempt a full exploration of the parameter space. Instead,
we focus on two particular choices for (3, ky, kr) and
find solutions for a wide range of values of ¢ in these
two cases. It is not clear how best to fit a two-layer
model to the atmosphere; we have simply chosen two
sets of parameters that represent moderately supercrit-
ical and strongly supercritical flows.

In case 1, we choose (8 = 0.25, kyy = 0.2, ky
= 1/30). Figure la shows the resulting zonal-mean
winds in the two layers, for the widths ¢ = 5 and 10.
Two wider jets (¢ = 20 and 40) are shown in Fig. 1b.
Low-level westerlies are produced under the jet core,
except in the widest case shown. For the wider jets, the
storm track splits (Panetta 1993), and the eddy mo-
mentum fluxes- directed into the different regions of
enhanced eddy activity produce multiple regions of sur-
face westerlies. Each region of surface westerlies is as-
sociated with a local maximum in vertical shear as well
so that this structure is magnified in the upper-level
winds. The strengths of the surface drag and radiative
relaxation are such that the multiple jet structures are
less well defined than in many of the cases described
in Panetta (1993). The 1000-day averages are insuffi-
cient to obtain climatic statistics that are reasonably
symmetric about the central axis, due to the slow time-
scales associated with these split jets.

Figure 2a shows the lower-layer potential vorticity
gradient in these experiments. Two other cases, with
even wider jets (o = 80 and 160), have also been in-
cluded. The value of this gradient in radiative equilib-
rium at the center of the jetis 8 — 0.5 = —0.25. In the
narrowest cases only is there a substantial reduction in
the strength of this gradient. The eddies clearly become
less efficient at removing the negative gradient as the
jet widens.

‘Figure 2b contains the eddy potential vorticity fluxes
in the two layers for the six different jet widths. Notice
that the width of the region of eddy activity as mea-
sured by these fluxes is somewhat narrower than the
width of the jet. For ¢ = 20, the half-width of the flux
is roughly 6. This flow is rather weakly unstable, in that
the lower-layer potential vorticity gradient is negative
near the center of the jet only. In fact, the regions of
significant eddy PV fluxes correspond closely with the
regions of negative PV gradient in Fig. 2a.

The second set of parameters that we study (case 2)
is (8 = 0.10, ky, = 0.2, k; = 0.01). The smaller value
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Fic. 1. Meridional profiles of the upper- and lower-layer time-
mean zonal-mean wind for the experiments of case 1 with (a) o = §
(solid line) and o = 10 (dashed line) and (b) ¢ = 20 (solid line) and
o = 40 (dashed line). The upper-layer curves always have the larger
positive values.

of S results in a more unstable flow that extends over
a larger fraction of the jet, while the smaller value of
kr allows the eddies to modify the mean shears more
easily. Figure 3 shows the mean zonal winds for three
values of ¢ (3, 5, and 10). The upper-level winds have
now been reduced from 1.0 in radiative equilibrium to
less than 0.6 for the narrowest jet. This is in strong
contrast with case 1, in which the upper-level winds
increase in strength at the center of the jet. The surface
winds are weaker than in case 1 because the momentum
fluxes in this model generally decrease in amplitude as
B is reduced.

The low-level PV gradient and the PV fluxes for case
2 are shown in Fig. 4. Here, we have included addi-
tional calculations for o = 20 and 40. The radiative
equilibrium PV gradient at the center of the lower layer
is now —0.4. The eddies have a larger effect on the
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minimum value of this gradient than in case 1, but their
effect still gets smaller as the jet expands. There is no
hint that the fluxes are asymptoting to some constant
value as the width increases, unlike case 1, and unlike
the one-wave simulations in Panetta and Held (1988).
However, the flux is not increasing as fast as ¢ 2.

To explore the implications of this dependence of
the flux on jet width, consider the simplest adjustment
hypothesis. We assume that the PV fluxes in the two
layers are equal and opposite so that U, = § and

Ueq - Ul BQZ aQeq 1 82F2
——— = -0 ==, (10)
2 ay ay kr Oy
where
00, Uy 00, Ueg
=2 - =1, X g e 11
By B 5 5 B > (11)
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Fi1G. 2. Meridional profiles of (a) the lower-layer zonal-mean po-
tential vorticity gradient and (b) the eddy potential vorticity flux for
the experiments of case 1 with o = 5, 10, 20, 40, 80, and 160. In (a)
the highest curve corresponds to o = S and the lowest to ¢ = 160.
In (b) fluxes increase monotonically in magnitude as o increases. The
upper-layer fluxes are negative, and the lower-layer fluxes positive.
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FiG. 3. Meridional profiles of the upper- and lower-layer time-
mean zonal-mean wind for the experiments of case 2 with 0 = 3
(solid line), o = 5 (dashed line), and o = 10 (doited line).

Setting Q. = 0 at y = 0, we can define

Qo (y) = By — %tanh(y/a)

1
= U(ﬁn - Etanh(n)) n= (12)

9 I~

As shown in Fig. 5, the PV gradient in the lower layer
is now adjusted to zero between the points at which
Q.q(y) crosses zero. This region extends from —y, to
+y., where y. = ao, and where « is dependent only
on A. The PV flux required for this adjustment can be
obtained from (10). Its value at y = 0 is

k 0

5 f Qea(m)dn.

(13)

Since Q., is proportional to o, F,(0) is proportional to
o If one adjusts to a constant negative gradient, rather
than zero, the predicted values are reduced, but the flux
still increases as o 2.

As we have seen, as ¢ increases, the flux is evidently
asymptoting to a constant in case 1, while in case 2 the
flux continues to increase but less rapidly than o-%. Con-
sistently, the reduction in the low-level PV gradients in
Fig. 4 decreases as o increases, just as in case 1.

k 0
FZ(O) = _éf Qeq(y)dy =0

Ye

4. Fluxes and diffusivities produced by the
homogeneous model

In the homogeneous model, the time-averaged PV
fluxes in each layer become horizontally uniform if one
integrates long enough. Therefore, we need only ex-
amine the domain-averaged PV flux in either layer (F),
= —F,). For case 1 parameters, and with the prescribed
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FI1G. 5. Meridional profile of the equilibrium (solid line) and of the
baroclinically adjusted (dashed line) potential vorticity gradient.
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shear § = U; — U, = 1, the resulting PV flux has the
magnitude 0.191. This is quite consistent with the value
to which the fluxes in the center of the channel seem
to be asymptoting in Fig. 2b. Assuming that the eddy
fluxes do asymptote to a constant as ¢ =  and that the
fluxes vary smoothly with latitude, the eddy flux con-
vergence will approach zero, and the eddies will be
incapable of modifying the mean flow. As discussed by
Haidvogel and Held (1980) and by Panetta and Held
(1988), in this ‘‘homogeneous limit’’ one expects the
statistics in the middle of the jet to approach those of
the homogeneous model forced by the radiative equi-
librium shear at the jet center. This result provides clear
evidence for the existence of this asymptotic limit.

Repeating this calculation for case 2 parameters, the
homogeneous model predicts a flux of 3.2, which is a
factor of 4 larger than the largest values in Fig. 4b. The
implication is that we are still far from the homoge-
neous limit in this case; this limit being much harder
to reach than in case 1 because of the larger eddy am-
plitudes and smaller &;.

Does this imply that the fluxes predicted by the ho-
mogeneous model are relevant only in extraordinarily
broad baroclinically unstable flows? To check on their
more general relevance, we compute the PV flux in the
homogeneous model as a function of the imposed ver-
tical shear S or, equivalently, the lower-layer PV gra-
dient § — $/2, holding all other parameters fixed. The
result is shown in Fig. 6 for cases 1 and 2. One can
then consider these curves as a local ‘‘theory”’ for the
mean PV flux at a given latitude, given the mean shear
or PV gradient.

The validity of this approximation can be determined
by the scatterplots in Figs. 7 and 8. We have replotted
the homogeneous prediction and superposed a scatter-
plot of the channel model’s low-level PV flux versus
its low-level PV gradient. Plotting against shear rather
than low-level PV gradient increases the scatter some-
what, but the qualitative result is similar. In case 1, the
local homogeneous prediction works remarkably well
for all except the narrowest jets, showing clear dis-
agreement only for the two smallest widths, o = 10 and
S, for which the homogeneous theory seriously under-
predicts the flux. In case 2, the agreement is even better,
extending to narrower jets, although the sense of the
error in the narrowest case is the same.

These results demonstrate that one can think of the
homogeneous model as providing a relation between
the local lower-layer PV flux and local PV gradient,
F,(9q/0y), that can be used to predict the behavior of
the inhomogeneous model, except for the narrowest
jets. If momentum fluxes are ignored, the nondimen-
sional eddy heat flux H is equal to the lower-layer PV
flux and is related to the local vertical shear according
to H(S) = F,( — S/2). This function can be defined
by fitting an analytical expression to the points in Fig.
6 or by simply interpoiating between these points. One
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FIiG. 6. Domain-averaged lower-layer eddy PV fluxes for the ho-
mogeneous model in both case 1 and case 2, as a function of the
vertical shear S in the upper panel and as a function of the lower-
layer PV gradient in the lower panel (the stars represent the values
in each experiment).

can then solve the mean PV or, equivalently, the (non-
dimensional ) temperature equation
o6 OH(S)

S
0—5———8;——19(0—0&;) 5=

(14)

(Within the quasigeostrophic approximation, there is
no transport of heat by the mean meridional circulation
if the eddy momentum fluxes are neglected.) The
lower-layer PV or heat fluxes that one obtains by solv-
ing (14) for different jet widths are displayed in Fig. 9
for the two cases. Here, we have defined the relation-
ship H(S) by linear interpolation on the results in Fig.
6. We have also replotted the lower-layer PV fluxes
obtained by integrating the channel model. The results
for the narrowest jet in case 1 have not been included
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FiG. 7. Comparison between the domain-averaged lower-layer eddy PV fluxes obtained with the homogeneous model as a function of the

lower-layer PV gradient (stars and solid line) and the local values assumed by the eddy PV fluxes in the channel experiments as a function

of the local PV gradient in the lower layer, for case 1.
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to avoid conjestion. Consistent with the previous re-
sults, this local theory predicts both the meridional dis-
tribution and the amplitude of the flux remarkably well,
except for narrow jets.

FiG. 8. As in Fig. 7 except for case 2. Note that the vertical
scale increases as ¢ increases.

The predicted flux for the narrowest jet in case 1 is
plotted in Fig. 10, along with the upper- and lower-
layer PV fluxes obtained from the channel model. The
sign of the upper-layer flux has been changed. With
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Fic. 9. Meridional profile of the lower-layer eddy PV flux for the
channel model (solid lines) and the prediction of the diffusive model
described in the text (dotted lines): (upper panel) for case 1 ¢ = 10,
20, 40, 80, and 160; (lower panel) for case 2 o = 3, 5, 10, 20, and
40.

this sign change, the eddy.heat flux is the average of
these two PV fluxes, and the eddy momentum flux con-
vergence is the difference between them. The homo-
geneous theory cannot distinguish between these dif-
ferent fluxes. It compares somewhat better in amplitude
to the upper-layer flux, but the predicted meridional
extent agrees better with that of the lower-layer flux.
There is no reason to expect detailed agreement be-
tween a homogeneous model that has no time-mean
momentum flux convergence and a flow in which the
eddy momentum fluxes play such a significant role.
We speak of the homogeneous model as providing
a local diffusive theory. The PV fluxes predicted by the
homogeneous model are downgradient in both layers,
except for very weak countergradient fluxes in the
lower layer when S/2 < 8. The countergradient flux
in these very weakly supercritical flows occurs because
of dissipative destabilization (the damping is generat-
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F1G. 10. Meridional profiles of the lower- and upper-layer eddy PV
fluxes for the channel model experiment of case 1 with ¢ = 5, to-
gether with the meridional profile of the eddy PV flux predicted by
the diffusion model.

ing rather than dissipating enstrophy). These small
fluxes are of no consequence in the comparison of the
homogeneous and inhomogeneous models. To keep the
diffusivity well defined, we subtract the small values
of the flux when S = /2 from the flux at other values
of §, before dividing by the PV gradient (in case 1 this
value is 0.003). The diffusivities predicted by the ho-
mogeneous model in the two layers are not equal, in
general; the fluxes are equal and opposite, but the gra-
dients have unequal amplitudes if 8 # 0.

The diffusivity for lower-layer PV predicted by the
homogeneous model is displayed in Fig. 11. Also
shown are analytical fits of the form
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FiG. 11. Diffusivity of the lower-layer PV predicted by the ho-
mogeneous model (stars) in cases 1 and 2, and the analytical fit (solid
lines), as a function of the vertical shear S.
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D = ySEVI(E - 1), (15)
where
S
= : L = 20.
£ Pk Seri B

The diffusivity is assumed to drop to zero when § de-
creases below S or, equivalently, when the lower-
layer PV gradient becomes positive. The constant v is
set equal to 0.55 in case 1 and 0.34 in case 2. No claim
is made as to a physical basis for this fit, although Held
and Larichev (1996) argue that D*/S\ should be pro-
portional to £2 in the limit of a very supercritical flow,
where D* is the dimensional diffusivity and \ is the
deformation radius. The fit (15) works quite well for
the larger fluxes in case 2 produced by shears up to S
= | that are not shown in the figure. A scatterplot of
this theory against the diffusivities generated by the
integrations of the channel model is similar to that for
the fluxes in Figs. 7 and 8 but with more scatter at small
values of the PV gradient.

For large shear §, (15) implies that the heat and PV
fluxes are proportional to S*. The fourth-power depen-
dence may seem surprisingly strong, but Held and Lar-
ichev describe numerical solutions, more energetic than
the flows considered here, that indicate that this fourth-
power law actually underestimates the sensitivity of the
flux to the shear.

If one solves the mean temperature equation (14)
with this analytical form for the diffusivity, rather than
that obtained by interpolation in Fig. 6, the result is
nearly identical to that plotted in Fig. 9.

5. Conclusions

We have integrated a two-layer model of a baroclin-
ically unstable jet to obtain a series of statistically
steady states for different jet widths. The simplest baro-
clinic adjustment construction, in which the Jower-level
PV gradient is prevented from falling below zero (or
some other fixed value), predicts that the eddy PV or
heat flux at the jet center should increase in proportion
to the square of the width of the jet. This is not found
to occur: for one set of parameters studied, the flux
clearly asymptotes to a constant as this width increases;
for the other (more strongly unstable) set, the flux in-
creases steadily but much slower than the width
squared. This is generally consistent with the analogous
results with a model truncated to one zonal wave by
Panetta and Held (1988), although it appears that the
dependence on the width is generally stronger in our
isotropically truncated model.

One can try to salvage the adjustment picture by al-
lowing the choice of linear theory, used to determine
when the eddies are neutralized, to depend on the flow.
For example, following Cehelsky and Tung (1991),
one can argue that the eddy energy moves to larger
scales as the jet widens and as the flow becomes more
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energetic and that these eddies are neutralized at larger
values of the shear. However, one is then required to
predict the scale of the energy-containing eddies. We
find it more natural to describe the resulting fluxes with
a local diffusive picture, which predicts that the flux
asymptotes to a constant as the width increases.

If there is a local relationship between PV fluxes and
mean gradients, we argue that a homogeneous turbu-
lence model, of the sort described by Haidvogel and
Held (1980), is the appropriate tool for determining
this relationship. First of all, by setting the shear in the
homogeneous model equal to the radiative equilibrium
shear at the center of the jet, this model predicts the
maximum PV fluxes that can be expected as the jet
width approached infinity. This result explains the dif-
ference between the two parameter settings used in the
jet computations. In the more weakly unstable case, this
homogeneous limit has been nearly attained for the
widest jets examined; with the more strongly unstable
setting, this maximum flux is still much larger than that
found with the jet widths consider here, although it
would ultimately be observed if one widened the jets
even farther.

More importantly, the local flux/gradient relation-
ship provided by the homogeneous model explains the
magnitude and latitudinal structure of the fluxes in the
inhomogeneous baroclinic jet model, even for jets of
moderate width in which the mean flow is significantly
modified by the eddies. In the more strongly unstable
case, there is good quantitative agreement down to a
jet half-width of 3 radii of deformation, in which the
half-width of the PV flux itself is roughly 2 radii of
deformation.

For the narrowest jets, especially in the more weakly
unstable case, this flux—gradient relationship underpre-
dicts the magnitude of the eddy flux. In these cases, the
eddy momentum flux convergence, which vanishes in
the homogeneous model, is a significant fraction of the
PV flux in the upper layer. It would be of interest to
determine why the homogeneous theory underpredicts
the flux in these cases.

Based on these encouraging results, we believe that
diffusive closure schemes for eddy PV (and heat)
fluxes can be of great value and that the problem of
developing and testing diffusive closure schemes can
usefully be split into two parts: 1) computing, and de-
veloping a theory for, the fluxes in horizontally ho-
mogeneous, baroclinically unstable flows and 2) stud-
ying the relationship between the fluxes in these ho-
mogeneous flows and the fluxes in inhomogeneous
flows of interest, such as baroclinically unstable jets.
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